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MOTIVATION

WHY DO WE NEED A HIDDEN SECTOR (HS)?
WHY TWO SECTOR REHEATING?
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NEED FOR A HIDDEN SECTOR: Traditional DM scenario

WIMP scenario



NEED FOR A HIDDEN SECTOR: Traditional DM scenario

Dearth of signals in collider, direct and indirect
detection experiments reducing the
parameters space for traditional WIMP
scenario

WIMP scenario



NEED FOR A HIDDEN SECTOR: HS as an alternative

m  Dearth of signals in collider, direct and indirect
detection experiments reducing the
parameters space for traditional WIMP
scenario

= A complete sector with its own host of
particles decoupled from SM as a possible
alternative




POPULATING THE HIDDEN SECTOR: How!?



POPULATING THE HIDDEN SECTOR: Traditional DM production

Inflation,
¢

Reheating

2

= WIMP DM populated by freeze out mechanism
SM+DM
ENF]

2

wM freeze-out




POPULATING THE HIDDEN SECTOR:Asymmetric reheating

Inflation,

¢

= One straightforward way to populate the HS is l
directly during reheating
Reheating
= Asymmetric reheating helps in avoiding the { ‘

stringent No¢y constraints

T 4
HS

DM
\ Tsm Tys

Relativistic degrees of freedom

Two sector reheating



PRIMARY GOAL: Finding temperature asymmetry

Inflation,

¢

Reheating

= |nflaton mediated interactions can thermalize the two sectors
Adshead, Cui and Shelton (2016).

: : : : T
= Primary aim to determine the temperature ratio x = —2=

Tsm

= A first step towards this goal.
Limit to simple perturbative reheating scenario...

Two sector reheating
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REVIEW OF SINGLE SECTOR PERTURBATIVE
REHEATING

mediated
scattering

UNDERSTAND PERTURBATIVE REHEATING PROCESS
DEMONSTRATE MODIFICATION DUETO QUANTUM STATISTICS




SINGLE SECTOR REHEATING: Boltzmann equations and assumptions

Post inflation Boltzmann Equations:

2P L shp, = T
Inflaton density dt + pd) - ¢‘p¢\

Inflaton decay width
dp -
radiation density d + 4Hp = Fd)p(l)

1
Hubble rate —H = \/_ \/qu + p

Generic model independent scenario in
perturbative limit

Post inflaton, inflaton condensate evolves like
a cold matter.

Assume instantaneous thermalization in
matter sector p = aT*



SINGLE SECTOR REHEATING: Reheating conditions

Post inflation, reheating Boltzmann Equations:

dpd) = |nitial conditions: py ; large non zero value;
Inflaton density — dt + 3H,0¢ ~ 0 pr = 0.
Inflaton decay width
dp — ®  Perturbative reheating era:
radiation density /E + 4Hp — Fd)pd) H > F¢
Hubble rate ——, I7 .~ ~3/2 = Reheating ends when
H=~ Pp1a H~T,



SINGLE SECTOR REHEATING: Inflaton condensate evolves like cold

matter

Post inflation, reheating Boltzmann Equations:

—+ 3Hps = 0
ar 2Py

dp+4H =T
dt P=1¢Py




SINGLE SECTOR REHEATING: Radiation evolution non-adiabatic

Post inflation, reheating Boltzmann Equations:

1030
W+3Hp¢z 1020}
dp %@’1010
—+4Hp =T Q
at P T ePe )
100,
H = - Py a7 [P
' ¢P : R
\/gMpl T>>H1O1(1)o° 10° /1010
p o elot afa; [poca?




SINGLE SECTOR REHEATING:Attractor solution!

——+3Hpsy = 0
ar o7

dp+4H =T
dt P =1¢P¢

1

~3/2
P10
V3M, V!

H ~




SINGLE SECTOR REHEATING:Attractor solution!

——+3Hpsy = 0
ar o7

dp+4H =T
dt P =1¢P¢

1

~3/2
P10
V3M, V!

H ~




SINGLE SECTOR REHEATING:Attractor solution!

dp¢ N
W—I_ 3Hp¢~0
dp _
O Y A
1 B 5a M(p ¢ p(l),l ar
H ~ p¢1a—3/2
V3M, VT

No dependence on temperature history




SINGLE SECTOR REHEATING:Attractor solution!

dt

dp

dt

H =~

1
V3My,

Pp1a

3/2

=)

2v/3 My,
S5a M(p

a -3/8
oPor (a—,)

No dependence on temperature history

200 o 1 I
verturbed |-




SINGLE SECTOR REHEATING: Reheat temperature independent of initial

conditions

dp¢ N
W—I_ 3Hp¢ =0
dp _
E+4HP = TpPg _ 2\/§Mpl . a 3/8
1 I Y Mg, o P a;
H ~ p¢1a—3/2
V3M, VT

Input arbitrary initial condition of
inflaton and radiation bath




SINGLE SECTOR REHEATING: Reheat temperature independent of initial

conditions

——+3Hpsy = 0
ar o7

dp+4H =T
dt P =1¢P¢

1

~3/2
P10
V3M, V!

H =~

Input arbitrary initial condition of
inflaton and radiation bath

- 2V3 M, a\ 8
S5a My o P <a,>

1020 % _

4
¢

p/

100,

— ¢
—MB

- = perturbed |
- = ¢ pertrubed| |

10720




SINGLE SECTOR REHEATING: Reheat temperature independent of initial

conditions

—> 2V3 My
T=""TQE
5a M(p

a -3/8
0757 )

Input arbitrary initial condition of
inflaton and radiation bath

Chung, Kolb and Riotto, (1999)

1020 % _

4
¢

p/

1 0-20 I

10°

— ¢
—MB
S o - = perturbed |
AR - = ¢ pertrubed| |
N\ < ~ -
S o ~
~ - - - R N -
/“s\\ ................
AN
v S
Same reheat temperature hRN
1 1/2 ~
Trh = <\/—5Mplr¢>
10° 101°

a/a;



SINGLE SECTOR REHEATING: Temperature dependence in [y,

d
m  Feedback from Bose enhancement or Pauli Blocking alters inflaton decay
dp idth
— +4Hp =T, widt
qc TP =lePg




SINGLE SECTOR REHEATING: Temperature dependence in [y,

d
m  Feedback from Bose enhancement or Pauli Blocking alters inflaton decay
dp idth
Y AHp =T widt
qc TP =lePg
1
V3M,, Po. Bosons Fermions
eMo/2T 4 1 eMe/2T _ 1

[y (T) =T oMo/2T _ 4 [p(T) =T eMo/2T 1 1



SINGLE SECTOR REHEATING: Temperature dependence in [y,

—+4+ 3H ~ (0

ar T oHPe
dp idth
Y AHp =T widt
qc TP = 1ePg
~ - ppia”>? Bosons

V3My,

eMo/2T 41

L (1) = To g —

N

T > Mg T & Mg
[ (T) ~ 4T,T /Mg [y (T) ~ Ty

m  Feedback from Bose enhancement or Pauli Blocking alters inflaton decay

Fermions

eMop/2T _ 1
F¢(T) =T, MGI2T &

T > M, T < Mg
[y (T) ~ [oMgy /4T [y (T) ~ Ty



SINGLE SECTOR REHEATING: Temperature dependence in [y,

dt

dp

dt

1

H ~
V3My,

Pp1a

width

3/2
Bosons

eMo/2T 41
[y (T) =T MG 1

N

T > My T & Mg
[ (T) ~ 4T,T /Mg [y (T) ~ Ty

Bose-enhancement

m  Feedback from Bose enhancement or Pauli Blocking alters inflaton decay

Fermions

eMop/2T _ 1
F¢(T) =T, MGI2T &

T > My T < Mg
[ (T) ~ [oMgy /4T [y (T) ~ Ty

Pauli-blocking



SINGLE SECTOR REHEATING: Modified attractor curves by quantum

statistics

4
¢

p/

1020 -

1010 -

100_

—BE|]

—MB
—FD|

10°




SINGLE SECTOR REHEATING: Modified attractor curves by quantum

statistics

4
¢

p/

. —BE |
—MB
1020 L \\\ FO(T/Md))pd) o H —FD/"
2 i,
10"0F N
100t ( ) L
ry(M,/T
o(Mg/ p¢ocH N
p \
10° 10° 1019




SINGLE SECTOR REHEATING: Modified attractor curves by quantum

statistics

H

——+3Hpsy = 0
ar o7

dp+4H =T
dt P =1¢P¢p

1

~ ~3/2
= P10
V3M, V!

T < q~3/8

. —BE|
—MB
—-1/2
1020 + ~ . Tocal/ —FD|]
\\\ _ ¢
<o LN
10[ //~
510 ..
Q
100_
T o g 3/10 N
10° 10° 1010




SINGLE SECTOR REHEATING: Modified attractor curves by quantum

statistics

H

——+3Hpsy = 0
ar o7

dp+4H =T
dt P =1¢P¢p

1

~ ~3/2
= P10
V3M, V!

T < q~3/8

. —BE|
—MB
—-1/2
1020_ . TOCa / _FD 1
\\\ _ ¢
<o LN
10 S
510 ..
Q
100_
T oc q~3/10 \
10° 10° 1010

This is for T, < M



SINGLE SECTOR REHEATING: Modified attractor curves by quantum

statistics

——+3Hpy = 0
a " 21Pe ' BE‘
9 | 4Hp =T e
E—I_ P =1¢pPyp —FD ]
1
H ~ D a—3/2
V3M, V! .
=
~
Q
Trn >’A4¢
T o q-3/8 | T o« q3/10 1001
0 5
10 10 10° 10°
a/a;

a/a;




SINGLE SECTOR REHEATING: Modified attractor curves by quantum

statistics

——+3Hpys = 0
ar TP
9\ 4Hp =T
dt P =1¢Pg¢
1
H~ ppa 3/?

V3M, V! .
=
~
I

Ty > My

T o q-3/8 T o g~3/10 100}

Quantum statistics modify
Reheat temperature

10° 10°

a/a;

10° 10°
a/a;




SINGLE SECTOR REHEATING: Summary

T « g~ 1/2
—4 1020} / —BE|
1020~ L —MB 1 —MB
N R - - perturbed [~ —FD
N A - = ¢ pertrubed
<+ \\N \“\ < 10
= R £ 10
Y 0L ~“~:\ Q
o Ix e .
\ \\ T o< a_3 8
\\ Trh > M¢
\\ 0oL
ha 10 T o q~3/10
_20 Il 1
10 A ——
10° 10° 1010 10° 10°
a/a; a/a;

Reheat temperature independent of initial conditions Quantum statistics can modify reheat temperature
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TWO SECTOR REHEATING

EFFECTS FROM QUANTUM STATISTICS- NEGLECT INFLATON MEDIATED INTERACTIONS
EFFECTS FROM INFLATON MEDIATED INTERACTIONS

REVIEW OF ASSUMPTIONS




NON INTERACTING SECTORS: Boltzmann equations

Post inflation, reheating Boltzmann Equations:

——+ 3Hp, =~ 0
ar 1Py

dp
—— + 4Hpa = Tg,apg

dpp
= TP =T ppg

1

~ ~3/2
=~ p ’ a

H




NON INTERACTING SECTORS: Final temperature ratio fixed after

reheating

d
. Bosons in both sectors
p
d_ta +4Hpg = Ty aPg ;
—.—Ta )
dpp ——Tp|]
—= T 4Hpy =Ty 0y _ b
t ) m stats on
g L o) 100 e T
~ / a
\/§Mpl ’0¢"1 g
~— Quantum stats off
~
1 0_5 L

rh

10° 10° 1010\

a/a;
/@ Reheating determined by hotter sector




NON INTERACTING SECTORS: Final temperature ratio fixed after

reheating

d

. Bosons in both sectors
Pa

¢ TP =Tgapg

dpp

. T APy =Ty ppe

0 I m stats on
g L o) 107 TS T
~ / a
V3M,,; Po

Quantum stats off

T/M,

10_5_

rh

10° 10° 1010\

a/a;
/@ Reheating determined by hotter sector




NON INTERACTING SECTORS: Final temperature ratio fixed after

reheating
Wb | 3110y ~ 0
TR Inflaton decay ends;
Bosons in both sectors T, /T, temperature ratio fixed regardless
ddita-l_ 4Hpg = Tyapy ——————— a of quantum statistics
AN
S S ——
dp ]
— + 4Hpy, =Ty Py _
dt 0 m stats on
1 o) 100 e T
H = \/§M ¢p¢'1a g
pl
~— Quantum stats off
—
107 ]
rh
a . .

a/a;
10° 10° 1010\

a/a;
/@ Reheating determined by hotter sector



NON INTERACTING SECTORS: Final temperature ratio fixed after

reheating
Wb | 3110y ~ 0
TR Inflaton decay ends;
Bosons in both sectors T, /T, temperature ratio fixed regardless
%%?4_4Hpa::p¢ap¢ ——————— a of quantum statistics
AN
S S ——
dp ]
— + 4Hpy, =Ty Py _
dt 0 m stats on
1 o) 100 e T
~ 3m,, VP g
pl
~— Quantum stats off
—
107 ]
rh
a . .

I I I I | I I I I | I I I I CL/CLZ'
10" 10° 1010\
I‘cp,a (Ta,rh)

a/ai 4
b (Torn)

Reheating determined by hotter sector Xfinal *




NON INTERACTING SECTORS: Quantum statistics shift final

temperature ratio

—+3Hpy, =0
dt Pe

Bosons in both sectors

dpp
——+4Hp, =T
dt + 4Hpp 6,bPe

10.8 «—Final x = T, /T,

1
H= [pga”3/?
V3m,, VP

0.6

0.4

Zero temperature
decay width of hotter
sector

Tp.a(Tarn)
0 4 « ¢,a\tarh
xflnal Fqb,b (Tb,rh)

L0910(Trh/M¢)




NON INTERACTING SECTORS: Quantum statistics shift final

temperature ratio

W + 3Hp¢ =0
. Bosons in both sectors
Pa —
2+ 4Hp = Tyapy 1
2P0 | 411py = Ty - :
dt ' 0.8 «—Final x = T, /T,
1
H ~ /_p¢'1a—3/2
Vi 0.6
0.4
i Quantum statistics starts being
important during reheating
Zero temperature 1 @ 0.2
decay width of hotter
sector 0 . Tpq (Ta,rh)

Xe: X
final Fqb,b (Tb,rh)

L0910(Trh/M¢)




NON INTERACTING SECTORS: Quantum statistics shift final

temperature ratio

—+3Hpy, =0
dt Py

. Fermions in both sectors
Pa — 1

ar T 4pa =Tgapg o
00, atp, =T -9
T TP = Reoke 10 10.8 «—Final x = T}, /T,
1 . =
~ ma 3/2
V3My = 11 11406
S -
=12
o 0.4
< -13 ] . Quantum statistics starts being
important during reheating
Zero temperature -14 <4 B 0.2
decay width of hotter |
sector 0 % I$,a (Ta,rh)
7 6 -5 -4 3 -2 -1 rmat o (Tyrn)
Log1o(Trn/Mgp) Log;o(w),




NON INTERACTING SECTORS: Non trivial structure when different

quantum statistics

—+3Hpy, =0
dt Pe

dpp
——+4Hp, =T
at + 4Hpp 6,bPe

1
H= [pga”3/?
V3m,, VP

Zero temperature
decay width of boson
sector

L0910(Trh/M¢)

Bosons in sector a, Fermions in sector b

0.6

0.4

0.2

10.8 <—{Fina| X = Teo1a/Thot

4
xfinal X

I‘cp,a (Ta,rh)

b (Torn)




NON INTERACTING SECTORS: Non trivial structure when different

quantum statistics

—+3Hpy, =0
dt Pe

Bosons in sector a, Fermions in sector b

dpb '9

—+4Hp, =T
dt Pp ¢.bP¢

10.8 <—{Fina| X = Teo1a/Thot

-10
1 S
H~ -3/2 S
Tty Vo1 E -11 0.6
S 10*
\L_‘/ '1 2 ——T,
(@) —O—Tb
o 0.4
2 -13 @
— =
Zero temperature -14 0.2 = 1o
decay width of boson
sector 0 \
102 | r
2 4 6 8 10° 108 1070
LOQlO(TTh/qu) L0g10(w)< w =Ty /T, a/a;
, ,a




NON INTERACTING SECTORS: Non trivial structure when different

quantum statistics

d
Bosons in sector a, Fermions in sector b
dp )

a

dt

+4Hpg = Ty aPg

dpp

—+4Hp, =T
dt Pp ¢.bP¢

1
H= [pga”3/?
V3m,, VP

Zero temperature
decay width of boson
sector

Log1o(Trn/Mgp) Log;o(w), W =Ty /Toq /%
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Boltzmann

equations

Post inflation, reheating Boltzmann Equations:

dpa B
dt +4Hp, = Fqb,apd) — Cg
dpp _
dr +4Hpp =Ty ppp + Ck

H - + pg +
@Mpz‘/qu Pa + Pp




INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Analytic

form for collision term

——+3Hpy = (Tp,a + Tpp)Pg

dt a b
dp ---.?---
a
dt +4Hpg, =Ty app — Cg
a b
dpp _
E + 4Hpb = Fd),bqu aP CE

~
~

1
¥ pa +
NETS VPe1 t+ Pat Py




INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Analytic

form for collision term

-+ 3Hpy = (Tpa + Tpp)Pg a b
dpa e
-+ 4Hp, =Ty app — Cg > <
a b
dpp
—; 4Py = Tpppy + Cr d3p1 d3p2 d3p3 d3P4 S
_ o )4 54 _ 2
< = P ¥ P ¥ P o / 2B (2m)° 2B(2m)P 2Ba(2m) 2Bs(2myp ) O PP = e Pl MES
V3My, X (Er + E2) | f1(p1) f2(p2) (1 £ f3(p3)) (1 £ fa(pa)) — f3(p3) fa(pa) (1 £ f1(p1))(1 £ fa(p2))]-




INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Analytic

form for collision term

7 + 3Hp¢ = (F(l),a + Fd),b)pd)

dpa _
W +4Hp, = F¢,ap¢> —Cg

dpp _
E‘F 4Hpb = Fd),bqu aP CE

~
~

1
¥ pa +
NETS VPe1 t+ Pat Py

oo / $Ppr Ppy Pps P
B 2E1(27T)3 2E2(27T)3 2E3(2ﬂ')3 2E4(27T)

X (E1+ E2)[f1(p1) f2(p2)(T = f3(p3) (1 = fa(ps)) — f3(p3) fa(pa)(1 £ f1(p1))(1 £ f2(p2))].

=(2m)*6* (p1 + p2 — p3 + pa)|IM[*S



INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Analytic

form for collision term

——+3Hpy = (Tp,a + Tpp)Pg

b
dp ---.?---
a
dt +4Hpg, =Ty app — Cg
b

a

dditb +4Hpp =Ty ppy + Cg d3p1 d3p2 d3p3 d3p4 R

. Cp = [Aﬁ S S T S S 3(27T)454(p1+p2—p3+p4)!M|2S
H%@—M\/p¢,z+pa+pb 10 ' 7 sy

v = fa(pa)) — f3(p3) fa(pa) (1 = f1(p1))(1 £ fa(p2))]-
10°4 1
= 10°° Derived analytic expression for
= Numerical non-equilibrium energy transfer between
101 - HighT two sectors at different temperatures
Maxwell- Boltzmann including quantum statistics.
10719 LowT ]
0.01 0.05 0.10 0.50 1 5 10
Ta/M,




INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Analytic

form for collision term

_dt + 3Hp¢ = (F(l).a + F¢,b)P¢
dp
-+ 4Hpa = Tyapy — Cp

dpp _
E‘F 4Hpb = Fd),bqu aP CE

1
H~— ¥ pg T
J?Mpl‘/p"’" Pa Py

a
3 3 3 3
c [ d°p1 d°po d°ps3 d°pa
F: ~ T o~ o~ 7~ N )~ /o~ N D)~ ~
10~ —
104
c 10°°
— Numerical
10~ 14 ~=- HighT
Maxwell- Boltzmann |
10-1° LowT i
0.01 0.05 0.10 0.50 1 5 10
Ta/My

3 (2m)*6*(p1 + p2 — p3 + pa)|M|?S

“ e fa(pa)) — Fa(pa) Falpa) (1 & f1(p1)) (1 & folp2))):

Derived analytic expression for
non-equilibrium energy transfer between
two sectors at different temperatures
including quantum statistics.

Birell, Yang and Rafelski (2014)




INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Collision

term for scalar trilinear coupling with inflaton

——+3Hpy = (Tp,a + Tpp)Pg

b
dt +4Hp, = F¢,ap¢> —Cg
b

a
%+4Hpb=r¢bp¢+55 3 3 3 3
dt ' Cr — [ d’py d°po d°ps3 d°pa (2 )454 B Mzg
. D S W= (p1 + p2 p3+p4)! |
Ha N Poi T Pat Py 101 R ]
b ~ T3 Log(Ta/M, I fa(pa)) — f3(p3) fa(pa) (1 £ f1(p1))(1 £ fa(p2))]-
10-4 |
= 10°° vy Derived .a.na!ytic expression for
3/2 = Numerical non-equilibrium energy transfer between
/ 1014l - HighT two sectors at different temperatures
s-channel collision Maxwell- Bolzmann || iN€luding quantum statistics.
term for scal-ar triline.:ar 10°19 LowT 1
E‘;‘t‘ﬁ':;ii;’:s'”ﬂat°" n 0.01 0.05 0.10 0.50 1 5 10
Ta/Ms




INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Collision

term for scalar trilinear coupling with inflaton

——+3Hpy = (Tp,a + Tpp)Pg

b
dt +4Hp, = F¢,ap¢> —Cg
b

a
a0 +4Hp, =Ty ppy + Cg d3 d3 d3 d3
dt ' Cr [ p1 p2 p3 2 : 2§
FE_— P o DTy L ND ATy S ND o o o 3 ( ’n-) Resonance bOOSt In S- |
1
Hz\/g—Ml\/p¢'1+pa+pb 10' ' ‘ tT ' - 3| ‘ L ’/ Cha’nnel
P ~ 13 Log(Ta/M, B fa(pa)) = J3Ws)Japa) L = J1(p1)) (1 £ fa(p2))]-
10-4 i
= 10°° Derived analytic expression for
-M ofe o
32,71, , non-equilibrium energy transfer between
— Numerical it
10l <o HighT Fwo sc.actors at di eren.t t.emperatures
s-channel collision Maxwell- Boltzmann | mCIUdmg quantum statistics.
term for scalar trilinear 1019 LowT 1
;‘;‘:E':;iig:s'”ﬂat°" n 0.01 0.05 0.10 050 1 5 10
Ta/My




INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Scattering

becomes effective after reheating

7 + 3Hp¢ = (F(l),a + F¢,b)p¢
i Inflaton with trilinear coupling to relativistic scalars in both sectors
-+ 4Hpa = Tyapy — Cp
dpp _
E+4‘Hpb = F¢,bp¢+CE 5 . . . . .
107 —T,
1 o — T
H~———\/pg1+ pa+Pp
V3My, o ? 1o Sca‘f For a, ~ ap, inflaton mediated
» NO sca ..
0l |
< 10 scattering is usually never strong
3 enough to overcome the Hubble rate
&~ before reheating for the interaction
105 theories we consider.
arh
10° 10° 10'°

a/a;



INFLATON MEDIATED SCATTERING BETWEEN SECTORS: C attractor

7 + 3Hp¢ = (F(l),a + F¢,b)p¢
Inflaton with trilinear coupling to relativistic scalars in both sectors

dpa
T 4Hpg =Ty app — Ck e S —
dpy 10° 1020 \ _4H,0a
ar +4Hp, =Ty ppy + Cg ~ \ —4H py
I +CE
1 g1 TS pseudo-Cg| |
H~—— [por + pa + 2 2
NS VP, F Pat Pp = 109
107 1
[Inl S ]
10 10 /‘ 10 o 10-20 7
A better representation of 10740F 1
thermalization process - :
10° 10° 1010



INFLATON MEDIATED SCATTERING BETWEEN SECTORS: C attractor

= 3Hpy = (Tpa + Tpp)Pg
Infl ith trili [ lativistic scalars in both 4Hpy
nflaton with trilinear coupling to relativistic scalars in both sectors 4 _
dpq _ X 4H
dt +4Hpa_r¢,ap¢_CE pa
dpy = 10° 1020 \ _4H,0a
E+4Hpb = F(l),bqu +CE ~ \ _4Hpb
. I —O—CE
1 - 10 —~—— .
H~—— +p, + = = pseudo-Cg| |
NETS VPe1 t+ Pat Py = 100
10°® 1
0o ]
10° 1(;5 /‘ 10‘10 E 10-20 _
A better representation of 10740+ :
thermalization process - :
10° 10° 1010



INFLATON MEDIATED SCATTERING BETWEEN SECTORS: C attractor

7 + 3Hp¢ = (F(l),a + F¢,b)p¢
Infl ith trili [ lativistic scalars in both 4H py
nriaton with trilinear coupling to relativistic scalars in both sectors 4 __
Pa | 4hip, =T C x 4H
dt + Pa = L¢p,aP¢p — LE | | | | | | | | | | | | pa
dpy = 10° ‘ ; 1020 \ _4H,0a
E+4Hpb = Fd),bqu + Cg {0 X \ _4Hpb
i N - - T, no sca —.—CE
1 - 10 — ]
o~ = ~ pseudo-Cg
NS VP + Pat P s 10° N 1
10 T
0 \
1o’ 10° Jai 10" =i 0'20 1 Collision term
1 neglecting feedback from
1 colder sector during
) I 1 thermalization process
A better representation of 10740+ -
thermalization process Ay :
. N
10° 10° 1010



INFLATON MEDIATED SCATTERING BETWEEN SECTORS: C attractor
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Cr attractor
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Cr attractor

7 + 3Hp¢ = (F(l),a + F¢,b)p¢
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: x

independent of initial history

7 + 3Hp¢ = (F(l),a + F¢,b)p¢
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: x

independent of initial history

¢ T3Hpg = (Tp,a + Tpn)Pg
Inflaton with trilinear coupling to relativistic scalars in both sectors x4 ~ 4Hpy
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: x

independent of initial history

7 + 3Hp¢ = (F(l),a + F¢,b)p¢
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to same temperature 1 02 1 04 1 06 1 08




INFLATON MEDIATED SCATTERING BETWEEN SECTORS: x

independent of initial history

4py +3Hpy = (Tpq + T
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: x (almost)

independent of initial history
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Finding x

analytically

¢ T3Hpg = (Tp,a + Tpn)Pg
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Numerical

final x contour plot
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Numerical

final x contour plot
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Numerical

final x contour plot
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INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Numerical

final x contour plot
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REVIEW OF MAJOR ASSUMPTIONS

Instantaneous thermalization
Neglected preheating

Neglected thermal effects in plasma



REVIEW OF MAJOR ASSUMPTIONS: Robust lower bound on

temperature ratio
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Inflaton mediated scattering provides a robust floor for TR e U RO
temperature ratio at T, ~ 0.2My given above effects end before 102 10* 108 108
this temperature scale.
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REVIEW OF MAJOR ASSUMPTIONS: Robust lower bound on

temperature ratio
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\ 4H py, boosted | |
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temperature ratio at T, ~ 0.2My given above effects end before 102 10* 108 108
this temperature scale. .
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TWO SECTOR REHEATING: Final temperature ratio in other theories
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SUMMARY

Only

quantum stat
effects
) Single Sector two Sector
reheating reheating
With inflaton

mediated
scattering

*  WIMP searches null result
* Two sector reheating allows large temperature asymmetry
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SUMMARY
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SUMMARY: QUESTIONS?
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