TWO SECTOR REHEATING

- PRANJAL RALEGANKAR, UIUC

TWO SECTOR REHEATING

CONTENTS

• WHY DO WE NEED A HIDDEN SECTOR (HS)?

• WHY TWO SECTOR REHEATING?

NEED FOR A HIDDEN SECTOR: Traditional DM scenario

WIMP scenario

NEED FOR A HIDDEN SECTOR: Traditional DM scenario

 Dearth of signals in collider, direct and indirect detection experiments reducing the parameters space for traditional WIMP scenario

WIMP scenario

NEED FOR A HIDDEN SECTOR: HS as an alternative

- Dearth of signals in collider, direct and indirect detection experiments reducing the parameters space for traditional WIMP scenario
- A complete sector with its own host of particles decoupled from SM as a possible alternative

POPULATING THE HIDDEN SECTOR: How?

POPULATING THE HIDDEN SECTOR: Traditional DM production

WIMP DM populated by freeze out mechanism

POPULATING THE HIDDEN SECTOR: Asymmetric reheating

- One straightforward way to populate the HS is directly during reheating
- Asymmetric reheating helps in avoiding the stringent N_{eff} constraints

$$\Delta N_{eff} = g_{HS} \left(\frac{T_{HS}}{T_{DM}}\right)^4 \le 0.46$$

Relativistic degrees of freedom

PRIMARY GOAL: Finding temperature asymmetry

- Inflaton mediated interactions can thermalize the two sectors Adshead, Cui and Shelton (2016).
- Primary aim to determine the temperature ratio $x = \frac{T_{HS}}{T_{SM}}$
- A first step towards this goal.
 Limit to simple perturbative reheating scenario...

REVIEW OF SINGLE SECTOR PERTURBATIVE REHEATING

- UNDERSTAND PERTURBATIVE REHEATING PROCESS
- DEMONSTRATE MODIFICATION DUE TO QUANTUM STATISTICS

SINGLE SECTOR REHEATING: Boltzmann equations and assumptions

Post inflation Boltzmann Equations:

- Generic model independent scenario in perturbative limit
- Post inflaton, inflaton condensate evolves like a cold matter.
- Assume instantaneous thermalization in matter sector $\rho = \alpha T^4$

SINGLE SECTOR REHEATING: Reheating conditions

Post inflation, reheating Boltzmann Equations:

Inflaton density

$$\frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} \approx 0$$

$$\frac{dr}{dt} + 3H\rho_{\phi} \approx 0$$

radiation density

$$\frac{d\rho}{dt} + 4H\rho = \Gamma_{\phi}\rho_{\phi}$$
 Inflaton decay width

Hubble rate
$$\longrightarrow H \approx \frac{1}{\sqrt{3}M_{pl}}\sqrt{\rho_{\phi,I}}a^{-3/2}$$

- Initial conditions: $\rho_{\phi,I}$ large non zero value; $\rho_{I} = 0.$
- Perturbative reheating era: $H \gg \Gamma_{\phi}$
- Reheating ends when $H \sim \Gamma_{\phi}$

SINGLE SECTOR REHEATING: Inflaton condensate evolves like cold matter

Post inflation, reheating Boltzmann Equations:

$$\frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} \approx 0$$

$$\frac{d\rho}{dt} + 4H\rho = \Gamma_{\phi}\rho_{\phi}$$

$$H\approx \frac{1}{\sqrt{3}M_{pl}}\sqrt{\rho_{\phi,I}}a^{-3/2}$$

SINGLE SECTOR REHEATING: Radiation evolution non-adiabatic

Post inflation, reheating Boltzmann Equations:

$$\frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} \approx 0$$

$$\frac{d\rho}{dt} + 4H\rho = \Gamma_{\phi}\rho_{\phi}$$

$$H \approx \frac{1}{\sqrt{3}M_{pl}}\sqrt{\rho_{\phi,l}}a^{-3/2}$$

$$\frac{\Gamma_{\phi}\rho_{\phi}}{\rho} \gg H_{\rho} \approx 0$$

$$\frac{10^{30}}{10^{20}}$$

$$\frac{10^{30}}{\rho \propto a^{-3/2}}$$

$$\frac{10^{30}}{10^{20}}$$

$$\frac{10^{30}}{\rho \propto a^{-3/2}}$$

$$\frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} \approx 0$$
$$\frac{d\rho}{dt} + 4H\rho = \Gamma_{\phi}\rho_{\phi}$$
$$H \approx \frac{1}{\sqrt{3}M_{pl}}\sqrt{\rho_{\phi,l}}a^{-3/2}$$

$$\frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} \approx 0$$
$$\frac{d\rho}{dt} + 4H\rho = \Gamma_{\phi}\rho_{\phi}$$
$$H \approx \frac{1}{\sqrt{3}M_{pl}}\sqrt{\rho_{\phi,l}}a^{-3/2}$$

No dependence on temperature history

No dependence on temperature history

SINGLE SECTOR REHEATING: Reheat temperature independent of initial conditions

SINGLE SECTOR REHEATING: Reheat temperature independent of initial conditions

SINGLE SECTOR REHEATING: Reheat temperature independent of initial conditions

Feedback from Bose enhancement or Pauli Blocking alters inflaton decay width

$$\frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} \approx 0$$
$$\frac{d\rho}{dt} + 4H\rho = \Gamma_{\phi}\rho_{\phi}$$
$$H \approx \frac{1}{\sqrt{3}M_{pl}}\sqrt{\rho_{\phi,l}}a^{-3/2}$$

 Feedback from Bose enhancement or Pauli Blocking alters inflaton decay width

Bosons

$$\Gamma_{\phi}(T) = \Gamma_0 \frac{e^{M_{\phi}/2T} + 1}{e^{M_{\phi}/2T} - 1}$$

Fermions

$$\Gamma_{\phi}(T) = \Gamma_0 \frac{e^{M_{\phi}/2T} - 1}{e^{M_{\phi}/2T} + 1}$$

This is for $T_{rh} < M_{\phi}$

SINGLE SECTOR REHEATING: Summary

Reheat temperature independent of initial conditions

Quantum statistics can modify reheat temperature

TWO SECTOR REHEATING

- EFFECTS FROM QUANTUM STATISTICS- NEGLECT INFLATON MEDIATED INTERACTIONS
- EFFECTS FROM INFLATON MEDIATED INTERACTIONS
- REVIEW OF ASSUMPTIONS

NON INTERACTING SECTORS: Boltzmann equations

Post inflation, reheating Boltzmann Equations:

$\frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} \approx 0$	_
$\frac{d\rho_a}{dt} + 4H\rho_a = \Gamma_{\phi,a}\rho_{\phi}$	
$\frac{d\rho_b}{dt} + 4H\rho_b = \Gamma_{\phi,b}\rho_\phi$	
$H\approx \frac{1}{\sqrt{3}M_{pl}}\sqrt{\rho_{\phi,I}}a^{-3/2}$	

NON INTERACTING SECTORS: Quantum statistics shift final temperature ratio

NON INTERACTING SECTORS: Quantum statistics shift final temperature ratio

NON INTERACTING SECTORS: Quantum statistics shift final temperature ratio

NON INTERACTING SECTORS: Non trivial structure when different quantum statistics

NON INTERACTING SECTORS: Non trivial structure when different quantum statistics

NON INTERACTING SECTORS: Non trivial structure when different quantum statistics

INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Boltzmann equations

Post inflation, reheating Boltzmann Equations:

$$\frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} = (\Gamma_{\phi,a} + \Gamma_{\phi,b})\rho_{\phi}$$
$$\frac{d\rho_{a}}{dt} + 4H\rho_{a} = \Gamma_{\phi,a}\rho_{\phi} - C_{E}$$
$$\frac{d\rho_{b}}{dt} + 4H\rho_{b} = \Gamma_{\phi,b}\rho_{\phi} + C_{E}$$
$$H \approx \frac{1}{\sqrt{3}M_{pl}}\sqrt{\rho_{\phi} + \rho_{a} + \rho_{b}}$$

INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Collision term for scalar trilinear coupling with inflaton

INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Collision term for scalar trilinear coupling with inflaton

INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Scattering becomes effective after reheating

Inflaton with trilinear coupling to relativistic scalars in both sectors

For $\alpha_a \sim \alpha_b$, inflaton mediated scattering is usually never strong enough to overcome the Hubble rate before reheating for the interaction theories we consider.

INFLATON MEDIATED SCATTERING BETWEEN SECTORS: Finding x analytically

Inflaton with trilinear coupling to relativistic scalars in both sectors

sector gets on the attractor curve.

 $x = x_{sc}$ only when $x_{rh} < x_{sc} < 1$.

REVIEW OF MAJOR ASSUMPTIONS

- Instantaneous thermalization
- Neglected preheating
- Neglected thermal effects in plasma

REVIEW OF MAJOR ASSUMPTIONS: Robust lower bound on temperature ratio

- Neglected preheating
- Neglected thermal effects in plasma

Inflaton mediated scattering provides a robust floor for temperature ratio at $T_a \sim 0.2 M_{\phi}$ given above effects end before this temperature scale.

REVIEW OF MAJOR ASSUMPTIONS: Robust lower bound on temperature ratio

TWO SECTOR REHEATING: Final temperature ratio in other theories

Scalar bosons

Gauge bosons

- WIMP searches null result
- Two sector reheating allows large temperature asymmetry

SUMMARY

SUMMARY: QUESTIONS?

